This is from pre calc
![This is from pre calc class=](https://us-static.z-dn.net/files/d32/b1d34590625782b26c3ae8fd74f47905.jpg)
Answer:
The dimensions are 106, 47,116
Step-by-step explanation:
[tex]when \: {(x + 10)}^{2} = {y }^{2} + {x}^{2} \\ then \: {y}^{2} = {(x + 10)}^{2} - {x}^{2} \\ {y}^{2} = {x}^{2} + 20x + 100 - {x}^{2} \\ {y}^{2} = 20x + 100 \\ then \: y = \sqrt{20x + 100} \\ when \\ area \: of \:rectangular \: = x \times y \\ then \\ x \times \sqrt{20x + 100} = 5000 \\ Square \: both \: sides \\ {x}^{2} (20x + 100) = 25000000 \\ 20 {x}^{3} + 100 {x}^{2} - 25000000 = 0 \\ Using \: the \: analysis \\ x = 106 \: \: \: or \: x = - 55.5 \\ \: We \: reject \: the \: negative \: solution \: because \: there \: is \: no \: length \: in \: the \: negative \\ then \: the \: dimensions \: are \: \\ 106 \\ 47 \\ 116[/tex]