Answer:
[tex]\displaystyle -1[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Interval Notation
- Function Notation
- Average Rate of Change: [tex]\displaystyle \frac{f(b) - f(a)}{b - a}[/tex]
Step-by-step explanation:
Step 1: Define
h(x) = x² + 3x - 6
[-7, 3] → a = -7, b = 3
Step 2: Find Average
- Substitute in variables [Average Rate of Change]: [tex]\displaystyle \frac{f(3) - f(-7)}{3 - -7}[/tex]
- [Average Rate of Change] Substitute in function: [tex]\displaystyle \frac{3^2 + 3(3) - 6 - [(-7)^2 + 3(-7) - 6]}{3 - -7}[/tex]
- [Average Rate of Change] Simplify: [tex]\displaystyle \frac{3^2 + 3(3) - 6 - [(-7)^2 + 3(-7) - 6]}{3 + 7}[/tex]
- [Average Rate of Change] Evaluate exponents: [tex]\displaystyle \frac{9 + 3(3) - 6 - [49 + 3(-7) - 6]}{3 + 7}[/tex]
- [Average Rate of Change] Multiply: [tex]\displaystyle \frac{9 + 9 - 6 - [49 - 21 - 6]}{3 + 7}[/tex]
- [Average Rate of Change] [Brackets] Subtract: [tex]\displaystyle \frac{9 + 9 - 6 - [28 - 6]}{3 + 7}[/tex]
- [Average Rate of Change] [Brackets] Subtract: [tex]\displaystyle \frac{9 + 9 - 6 - 22}{3 + 7}[/tex]
- [Average Rate of Change] Add: [tex]\displaystyle \frac{18 - 6 - 22}{3 + 7}[/tex]
- [Average Rate of Change] Subtract: [tex]\displaystyle \frac{12 - 22}{3 + 7}[/tex]
- [Average Rate of Change] Subtract: [tex]\displaystyle \frac{-10}{3 + 7}[/tex]
- [Average Rate of Change] Add: [tex]\displaystyle \frac{-10}{10}[/tex]
- [Average Rate of Change] Divide: [tex]\displaystyle -1[/tex]