Answer:
[tex]TU = 15[/tex]
Step-by-step explanation:
Given
[tex]\square MNOP \simeq\ \square STUV[/tex]
[tex]NO = 10[/tex]
[tex]OP = 4[/tex]
[tex]TU = x[/tex]
[tex]UV = 6[/tex]
Required
Determine the length of TU (i.e. x)
Because both shapes are similar, then the following equivalent ratios exist:
[tex]NO : OP = TU : UV[/tex]
Substitute values for NO, OP, TU and UV
[tex]10 : 4 = x : 6[/tex]
Represent as fraction
[tex]\frac{10 }{ 4 } = \frac{x }{ 6}[/tex]
Multiply both sides by 6
[tex]6 * \frac{10 }{ 4 } = \frac{x }{ 6} * 6[/tex]
[tex]6 * \frac{10 }{ 4 } = x[/tex]
[tex]x = 6 * \frac{10 }{ 4 }[/tex]
[tex]x = \frac{60 }{ 4 }[/tex]
[tex]x = 15[/tex]
Hence:
[tex]TU = 15[/tex]