Given that rectangle MNOP ~ rectangle STUV, what is the length of ¯¯¯¯¯¯ T U ?Rectangle M N O P is shown with segment N O labeled 10 and segment O P labeled 4. rectangle S T U V is shown with segment T U labeled x and segment U V labeled 6

Respuesta :

Answer:

[tex]TU = 15[/tex]

Step-by-step explanation:

Given

[tex]\square MNOP \simeq\ \square STUV[/tex]

[tex]NO = 10[/tex]

[tex]OP = 4[/tex]

[tex]TU = x[/tex]

[tex]UV = 6[/tex]

Required

Determine the length of TU (i.e. x)

Because both shapes are similar, then the following equivalent ratios exist:

[tex]NO : OP = TU : UV[/tex]

Substitute values for NO, OP, TU and UV

[tex]10 : 4 = x : 6[/tex]

Represent as fraction

[tex]\frac{10 }{ 4 } = \frac{x }{ 6}[/tex]

Multiply both sides by 6

[tex]6 * \frac{10 }{ 4 } = \frac{x }{ 6} * 6[/tex]

[tex]6 * \frac{10 }{ 4 } = x[/tex]

[tex]x = 6 * \frac{10 }{ 4 }[/tex]

[tex]x = \frac{60 }{ 4 }[/tex]

[tex]x = 15[/tex]

Hence:

[tex]TU = 15[/tex]