Respuesta :

Answer:

E. [tex]\angle 3[/tex] and [tex]\angle 5[/tex].

Explanation:

According to the figure, we have the following conclusions:

1) [tex]\angle 1[/tex] and [tex]\angle 2[/tex] are vertical opposite angles. ([tex]m \angle 1 = m \angle 2[/tex])

2) [tex]\angle 2[/tex] and [tex]\angle 3[/tex] are internal alternate angles. ([tex]m \angle 2 = m\angle 3[/tex])

3) [tex]\angle 2[/tex] and [tex]\angle 4[/tex] are corresponding angles. ([tex]m\angle 2 = m\angle 4[/tex])

4) [tex]\angle 3[/tex] and [tex]\angle 4[/tex] are vertical opposite angles. ([tex]m \angle 3 = m \angle 4[/tex])

But, [tex]\angle 3[/tex] and [tex]\angle 5[/tex], since [tex]m \angle 3 + m\angle 6 + m\angle 5 = 180^{\circ}[/tex], where [tex]\angle 3[/tex] is an acute angle and [tex]\angle 6[/tex] is a right angle, and [tex]m \angle 4 + m \angle 5 = 90^{\circ}[/tex]. Then,

[tex]m\angle 5 = 90^{\circ} -m\angle 4[/tex].

[tex]m\angle 5 = 90^{\circ}-m\angle 3[/tex]

Hence, the right answer is E.