Which of the following pairs of angles is not necessarily congruent
![Which of the following pairs of angles is not necessarily congruent class=](https://us-static.z-dn.net/files/d25/0e922fa1afd79592d3cb204f51acc3e2.png)
Answer:
E. [tex]\angle 3[/tex] and [tex]\angle 5[/tex].
Explanation:
According to the figure, we have the following conclusions:
1) [tex]\angle 1[/tex] and [tex]\angle 2[/tex] are vertical opposite angles. ([tex]m \angle 1 = m \angle 2[/tex])
2) [tex]\angle 2[/tex] and [tex]\angle 3[/tex] are internal alternate angles. ([tex]m \angle 2 = m\angle 3[/tex])
3) [tex]\angle 2[/tex] and [tex]\angle 4[/tex] are corresponding angles. ([tex]m\angle 2 = m\angle 4[/tex])
4) [tex]\angle 3[/tex] and [tex]\angle 4[/tex] are vertical opposite angles. ([tex]m \angle 3 = m \angle 4[/tex])
But, [tex]\angle 3[/tex] and [tex]\angle 5[/tex], since [tex]m \angle 3 + m\angle 6 + m\angle 5 = 180^{\circ}[/tex], where [tex]\angle 3[/tex] is an acute angle and [tex]\angle 6[/tex] is a right angle, and [tex]m \angle 4 + m \angle 5 = 90^{\circ}[/tex]. Then,
[tex]m\angle 5 = 90^{\circ} -m\angle 4[/tex].
[tex]m\angle 5 = 90^{\circ}-m\angle 3[/tex]
Hence, the right answer is E.