Respuesta :

Answer:

[tex]f(1)=-6[/tex]

[tex]f(n)=f(n-1)(-3)[/tex]

Step-by-step explanation:

We are given that

[tex]f(n)=2\cdot (-3)^n[/tex]

We have to complete  the recursive formula of f(n).

Substitute n=1

[tex]f(1)=2\cdot (-3)[/tex]

[tex]f(1)=-6[/tex]

[tex]f(2)=2\cdot (-3)^2=18[/tex]

[tex]f(3)=2\cdot (-3)^3=-54[/tex]

[tex]\frac{f(2)}{f(1)}=\frac{18}{-6}=-3[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{-54}{18}=-3[/tex]

It forms geometric sequence because the ratio of two consecutive terms are equal.

Therefore, the recursive formula

[tex]f(n)=f(n-1)r[/tex]

[tex]f(n)=f(n-1)(-3)[/tex]

Answer:

f(1) = -6

f(n)= f(n−1)⋅ -3

Step-by-step explanation:

ACCESS MORE