Respuesta :
Answer:
[tex]q_1=9.9998\mu C[/tex] and [tex]q_2=0.0002\mu C[/tex]
Or
[tex]q_1=0.00016\mu C[/tex] and [tex]q_2=9.99984\mu C[/tex]
Explanation:
We are given that
Force between two charges=0.036 N=[tex]36\times 10^{-3}N[/tex]
Distance between two charges, r=2cm=[tex]2\times 10^{-2}[/tex]m
1m=100cm
Sum of two charges=[tex]10\mu C[/tex]
Let one charge=[tex]q_1=q\mu C=q\times 10^{-6}C[/tex]
[tex]q_2=(10-q)\times 10^{-6} C[/tex]
We know that
Electric force between two charges
[tex]F=\frac{kq_1q_2}{r^2}[/tex]
Where [tex]k=\frac{1}{4\pi \epsilon_0}=9\times 10^{9}[/tex]
Using the formula
[tex]36\times 10^{-3}=9\times 10^{9}\times \frac{q\times 10^{-6}\times(10-q)\times 10^{-6}}{(2\times 10^{-2})^2}[/tex]
[tex]\frac{144\times 10^{-7}}{9\times 10^{9}\times 10^{-12}}=q(10-q)[/tex]
[tex]0.0016=10q-q^2[/tex]
[tex]q^2-10q+0.0016=0[/tex]
[tex]10000q^2-100000q+16=0[/tex]
[tex]q=\frac{100000\pm\sqrt{(100000)^2-4\times 10000\times 16}}{2\times 10000}[/tex]
Using the formula
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]q=9.999[/tex] and [tex]q=0.00016[/tex]
[tex]q_2=10-9.9998=0.0002[/tex]
[tex]q_2=10-0.00016=9.99984[/tex]
Hence, two charges are
[tex]q_1=9.9998\mu C[/tex] and [tex]q_2=0.0002\mu C[/tex]
Or
[tex]q_1=0.00016\mu C[/tex] and [tex]q_2=9.99984\mu C[/tex]