Respuesta :

Answer:

Step-by-step explanation:=(1+sinA)2+cos2A/cosA(1+sinA)

=1+sin2 A+2sin A+cos2 A/cos A(1+sin A)

=1+2sin A+1/cos A(1+sin A)

=2(1+sin A)/cos A(1+ sin A)

=2sec A

Answer:

see explanation

Step-by-step explanation:

Consider the left side

[tex]\frac{1+sinA}{cosA}[/tex] + [tex]\frac{cosA}{1+sinA}[/tex] ← combine into a single fraction

= [tex]\frac{(1+sinA)^2+cos^2A}{cosA(1+sinA)}[/tex] ← expand and simplify numerator

= [tex]\frac{1+2sinA+sin^2A+cos^2A}{cosA(1+sinA)}[/tex] [ sin²A + cos²A = 1 ]

= [tex]\frac{1+2sinA+1}{cosA(1+sinA)}[/tex]

= [tex]\frac{2+2sinA}{cosA(1+sinA)}[/tex] ← factor out 2 on the numerator

= [tex]\frac{2(1+sinA)}{cosA(1+sinA)}[/tex] ← cancel (1 + sinA) on numerator/ denominator

= [tex]\frac{2}{cosA}[/tex]

= 2secA = right side, thus verified

ACCESS MORE