can anyone solve this

Answer:
Step-by-step explanation:=(1+sinA)2+cos2A/cosA(1+sinA)
=1+sin2 A+2sin A+cos2 A/cos A(1+sin A)
=1+2sin A+1/cos A(1+sin A)
=2(1+sin A)/cos A(1+ sin A)
=2sec A
Answer:
see explanation
Step-by-step explanation:
Consider the left side
[tex]\frac{1+sinA}{cosA}[/tex] + [tex]\frac{cosA}{1+sinA}[/tex] ← combine into a single fraction
= [tex]\frac{(1+sinA)^2+cos^2A}{cosA(1+sinA)}[/tex] ← expand and simplify numerator
= [tex]\frac{1+2sinA+sin^2A+cos^2A}{cosA(1+sinA)}[/tex] [ sin²A + cos²A = 1 ]
= [tex]\frac{1+2sinA+1}{cosA(1+sinA)}[/tex]
= [tex]\frac{2+2sinA}{cosA(1+sinA)}[/tex] ← factor out 2 on the numerator
= [tex]\frac{2(1+sinA)}{cosA(1+sinA)}[/tex] ← cancel (1 + sinA) on numerator/ denominator
= [tex]\frac{2}{cosA}[/tex]
= 2secA = right side, thus verified