Respuesta :
Answer:
The length of the entire race is 9,5km
Step-by-step explanation:
Required
Determine the length of the race.
To aid my explanation, I have added an attachment which shows the triangular course.
From the attachment, we have:
A as the starting point and the following measurement;
[tex]\angle B = 11^{\circ[/tex]
[tex]\angle C = 13^{\circ} + 79^{\circ} = 92^{\circ[/tex]
[tex]\angle A + \angle B + \angle C = 180^{\circ}[/tex]
[tex]\angle A = 180^{\circ} - (\angle B + \angle C )[/tex]
[tex]\angle A = 180^{\circ} - (11^{\circ}+92^{\circ})[/tex]
[tex]\angle A = 77^{\circ}[/tex]
[tex]\angle B = 11^{\circ[/tex]
[tex]\angle C = 92^{\circ[/tex]
[tex]c = 4.4km[/tex]
Apply sine rule
[tex]\frac{a}{sin\ A} = \frac{b}{sin\ B} = \frac{c}{sin\ C}[/tex]
[tex]\frac{a}{sin\ 77^{\circ}} = \frac{b}{sin\ 11^{\circ}} = \frac{4.4}{sin\ 92^{\circ}}[/tex]
[tex]\frac{a}{sin\ 77^{\circ}} = \frac{b}{sin\ 11^{\circ}} = \frac{4.4}{0.9994}[/tex]
[tex]\frac{a}{sin\ 77^{\circ}} = \frac{b}{sin\ 11^{\circ}} = 4.403[/tex]
Split to solve for a and b
[tex]\frac{a}{sin\ 77^{\circ}} =4.403[/tex]
[tex]\frac{b}{sin\ 11^{\circ}} = 4.403[/tex]
Make a the subject
[tex]\frac{a}{sin\ 77^{\circ}} =4.403[/tex]
[tex]a = 4.403 * sin(77^{\circ})[/tex]
[tex]a = 4.403 * 0.9744[/tex]
[tex]a = 4.3km[/tex]
Make b the subject
[tex]\frac{b}{sin\ 11^{\circ}} = 4.403[/tex]
[tex]b = 4.403 * sin(11^{\circ})[/tex]
[tex]b = 4.403 * 0.1908[/tex]
[tex]b = 0.8km[/tex]
The length of the race is:
[tex]Length = a + b + c[/tex]
[tex]Length = 4.3km + 0.8km + 4.4km[/tex]
[tex]Length = 9.5km[/tex]
