need help please will mark you brainliests please give reason to
![need help please will mark you brainliests please give reason to class=](https://us-static.z-dn.net/files/d61/b436a3de8fc5f12bd6f09da65623584b.jpg)
Answer:
angle BAD = 180 -2x
angle BCD = x given
angle BCD is an inscribed angle
angle DOB = 2 (angle BCD)
angle BAD = 180 -angle DOB 2 tangent theorem
Step-by-step explanation:
Answer:
[tex] m\angle BAD= (180 - 2x)\degree [/tex]
Step-by-step explanation:
[tex] m\widehat {BD} =2\times m\angle BCD[/tex]
(By inscribed angle theorem)
[tex] m\widehat {BD} =2x\degree [/tex]
[tex] m\widehat {BCD} =360\degree - m\widehat {BD}[/tex]
(By arc sum property of a circle)
[tex] m\widehat {BCD} =360\degree - 2x\degree [/tex]
[tex] m\angle BAD=\frac{1}{2} (m\widehat {BCD}-m\widehat {BD}) [/tex]
(by property of intersecting tangents outside of the circle)
[tex] m\angle BAD=\frac{1}{2} [(360\degree - 2x\degree) -2x\degree] [/tex]
[tex] m\angle BAD=\frac{1}{2} (360\degree - 2x\degree -2x\degree) [/tex]
[tex] m\angle BAD=\frac{1}{2} (360\degree - 4x\degree) [/tex]
[tex] m\angle BAD=\frac{1}{2} \times 2(180\degree - 2x\degree) [/tex]
[tex] m\angle BAD= (180 - 2x) \degree [/tex]