Respuesta :

Answer:

angle BAD = 180 -2x

angle BCD = x                                                    given

angle BCD is an inscribed angle                      

angle DOB = 2 (angle BCD)                              

angle BAD = 180 -angle DOB                           2 tangent theorem      

Step-by-step explanation:

Answer:

[tex] m\angle BAD= (180 - 2x)\degree [/tex]

Step-by-step explanation:

[tex] m\widehat {BD} =2\times m\angle BCD[/tex]

(By inscribed angle theorem)

[tex] m\widehat {BD} =2x\degree [/tex]

[tex] m\widehat {BCD} =360\degree - m\widehat {BD}[/tex]

(By arc sum property of a circle)

[tex] m\widehat {BCD} =360\degree - 2x\degree [/tex]

[tex] m\angle BAD=\frac{1}{2} (m\widehat {BCD}-m\widehat {BD}) [/tex]

(by property of intersecting tangents outside of the circle)

[tex] m\angle BAD=\frac{1}{2} [(360\degree - 2x\degree) -2x\degree] [/tex]

[tex] m\angle BAD=\frac{1}{2} (360\degree - 2x\degree -2x\degree) [/tex]

[tex] m\angle BAD=\frac{1}{2} (360\degree - 4x\degree) [/tex]

[tex] m\angle BAD=\frac{1}{2} \times 2(180\degree - 2x\degree) [/tex]

[tex] m\angle BAD= (180 - 2x) \degree [/tex]

ACCESS MORE