Answer:
The answer is "[tex]\bold{0.36363 \ \frac{m}{s}}[/tex]"
Explanation:
Please find the attached file of the complete question:
Given:
[tex]m= 2.2 \ kg\\\\t= 40 \ ms[/tex]
Using formula:
[tex]\to F=ma[/tex]
[tex]= 2.2 \ (a)\\\\= 2.2 \ \frac{dv}{dt}[/tex]
but
[tex]\to F= f(t)\\\\[/tex]
[tex]\to 2.2 \ a= f(t)\\\\ \to 2.2 \ \frac{dv}{dt}=f(t)\\\\ \to \int^{v}_{0} \ dv =\int^{t= 40 ms}_{0} (\frac{f(t)}{2.2}) \ dt\\\\[/tex]
[tex]\to v= \frac{\text{(Area of given graph)}} {2.2} \\\\[/tex]
[tex]=\frac{1}{2} \times \frac{1}{2.2} \times 40 \times 40 \times 10^{-3} \ s\\\\= \frac{1}{4.4} \times 40 \times 40 \times \frac{1}{1000} \ s\\\\= \frac{1}{4.4} \times 16 \times \frac{1}{10} \ s\\\\= \frac{16}{44} \ s\\\\= 0.36363 \ \frac{m}{s}[/tex]