Respuesta :
Answer:
(a) [tex]P(x) = 1342.7x + 64792[/tex]
(b) [tex]P(60) = 145354[/tex]
(c) [tex]P(x) = 64792 *1.0175^x[/tex]
(d) [tex]P(60) = 183491[/tex]
(e) The exponential model is more realistic
Step-by-step explanation:
Given
[tex]1990 ==> P_0 =64792[/tex]
[tex]2010 ==> P_{20} =91646[/tex]
Solving (a): The linear model of the population growth
First, we calculate the slope of the function.
[tex]m = \frac{P_{20} - P_0}{20 - 0}[/tex]
[tex]m = \frac{91646 - 64792}{20 - 0}[/tex]
[tex]m = \frac{26854}{20}[/tex]
[tex]m = 1342.7[/tex]
The linear equation is then calculated using:
[tex]P(x) - P_0 = m(x - x_0)[/tex]
[tex]P(x) - 64792 = 1342.7(x - 0)[/tex]
[tex]P(x) - 64792 = 1342.7(x)[/tex]
[tex]P(x) - 64792 = 1342.7x[/tex]
Make P(x) the subject
[tex]P(x) = 1342.7x + 64792[/tex]
Solving (b): The population in 2050
First, calculate x:
[tex]x = 2050 - 1990[/tex]
[tex]x = 60[/tex]
Substitute 60 for x in [tex]P(x) = 1342.7x + 64792[/tex]
[tex]P(60) = 1342.7 * 60 + 64792[/tex]
[tex]P(60) = 80562 + 64792[/tex]
[tex]P(60) = 145354[/tex]
The population in 2050 is 145354
Solving (c): The exponential model of the population growth
An exponential model is:
[tex]y = ab^x[/tex]
In this case, it is:
[tex]P(x) = P_0 * b^x[/tex]
For x = 20, we have:
[tex]P(20) = P_0 * b^{20[/tex]
Substitute values for P(20) and P0
[tex]91646 = 64792 * b^{20[/tex]
Divide both sides by 64792
[tex]\frac{91646 }{64792} = \frac{64792 * b^{20}}{64792}[/tex]
[tex]\frac{91646 }{64792} = b^{20}[/tex]
[tex]1.41446474873 = b^{20}[/tex]
Take the 20th root of both sides
[tex]\sqrt[20]{1.41446474873} = b[/tex]
[tex]b = \sqrt[20]{1.41446474873}[/tex]
[tex]b = 1.0175[/tex]
So, the model is:
[tex]P(x) = P_0 * b^x[/tex]
[tex]P(x) = 64792 *1.0175^x[/tex]
Solving (d): The population in 2050
First, calculate x:
[tex]x = 2050 - 1990[/tex]
[tex]x = 60[/tex]
Substitute 60 for x in [tex]P(x) = 64792 *1.0175^x[/tex]
[tex]P(60) = 64792 *1.0175^{60[/tex]
[tex]P(60) = 64792 *2.832[/tex]
[tex]P(60) = 183490.944[/tex]
[tex]P(60) = 183491[/tex] ---- approximated
(e) The most realistic model
The exponential model is more realistic. This is so because:
The linear model grows at a constant linear rate which means that, every year a certain amount of individuals is added to the society. However, this is not always so because it is almost impossible to for growth rate to be constant
A curve in the exponential model shows that the addition of individuals in the society every year is not always constant.