Answer:
[tex]F(x) = f \circ g[/tex]
[tex]f(x) = x + 2[/tex] and [tex]g(x) = x[/tex]
Step-by-step explanation:
Given
[tex]F(x) = x + 2[/tex]
Required
Express as
[tex]F(x) = f \circ g(x)[/tex]
In functions:
[tex]f \circ\ g(x) = f(g(x))[/tex]
So, we have:
[tex]f(g(x)) = x + 2[/tex]
g(x) can be set to x and f(x) to x + 2
Hence:
[tex]F(x) = f \circ g[/tex]
When: [tex]f(x) = x + 2[/tex] and [tex]g(x) = x[/tex]