Answer:
The sprinkler will cover an area of [tex]50m^2[/tex]
Step-by-step explanation:
Given
[tex]Area = 240m^2[/tex]
[tex]\theta = 75^{\circ}[/tex]
Required
Determine the amount of area it can cover
The amount of area is calculated by calculating the area of a sector using:
[tex]Sector\ Area =\frac{\theta}{360^{\circ}} * \pi r^2[/tex]
Where:
[tex]Area = \pi r^2 = 240m^2[/tex]
So, we have:
[tex]Sector\ Area =\frac{\theta}{360^{\circ}} * 240m^2[/tex]
Substitute 75 for [tex]\theta[/tex]
[tex]Sector\ Area =\frac{75^{\circ}}{360^{\circ}} * 240m^2[/tex]
[tex]Sector\ Area =\frac{75^{\circ}* 240m^2}{360^{\circ}}[/tex]
[tex]Sector\ Area =\frac{75* 240m^2}{360}[/tex]
[tex]Sector\ Area =\frac{18000m^2}{360}[/tex]
[tex]Sector\ Area =\frac{18000}{360} m^2[/tex]
[tex]Sector\ Area =50m^2[/tex]
Hence, the sprinkler will cover an area of [tex]50m^2[/tex]