The total circular area a sprinkler can water is 240 2 . The sprinkler is set to rotate back and forth in a 75° pattern. Find the amount of area that will get watered.

Respuesta :

Answer:

The sprinkler will cover an area of [tex]50m^2[/tex]

Step-by-step explanation:

Given

[tex]Area = 240m^2[/tex]

[tex]\theta = 75^{\circ}[/tex]

Required

Determine the amount of area it can cover

The amount of area is calculated by calculating the area of a sector using:

[tex]Sector\ Area =\frac{\theta}{360^{\circ}} * \pi r^2[/tex]

Where:

[tex]Area = \pi r^2 = 240m^2[/tex]

So, we have:

[tex]Sector\ Area =\frac{\theta}{360^{\circ}} * 240m^2[/tex]

Substitute 75 for [tex]\theta[/tex]

[tex]Sector\ Area =\frac{75^{\circ}}{360^{\circ}} * 240m^2[/tex]

[tex]Sector\ Area =\frac{75^{\circ}* 240m^2}{360^{\circ}}[/tex]

[tex]Sector\ Area =\frac{75* 240m^2}{360}[/tex]

[tex]Sector\ Area =\frac{18000m^2}{360}[/tex]

[tex]Sector\ Area =\frac{18000}{360} m^2[/tex]

[tex]Sector\ Area =50m^2[/tex]

Hence, the sprinkler will cover an area of [tex]50m^2[/tex]

ACCESS MORE