Answer:
The answer are
A.
[tex] {f}^{ - 1} (x) = \frac{x + 3}{x - 2} [/tex]
B.
[tex] {f}^{ - 1} ( - 3) = 0[/tex]
Step-by-step explanation:
To find the infers we do that
[tex]f(x) = \frac{2 x + 3}{x - 1 } \\ (x - 1)f(x) = 2x + 3 \\ xf(x) - f(x) = 2x + 3 \\ xf(x) - 2x = f(x) + 3 \\ x(f(x) - 2) = f(x) + 3 \\ x = \frac{f(x) + 3}{f(x) - 2} \\ then \: \\ {f}^{ - 1} (x) = \frac{x + 3}{x - 2} \\ then \\ {f }^{ - 1} ( - 3) = \frac{ - 3 + 3}{ - 3 + 2} = 0[/tex]