the line MN is shown on the grid. find the equation of the perpendicular bisector of line MN.
![the line MN is shown on the grid find the equation of the perpendicular bisector of line MN class=](https://us-static.z-dn.net/files/d46/718459faf062861ad5c7f61d5bf97066.png)
Answer:
[tex]The~endpoints~of~MN~are~(-1,7)~and~(3,-1).\\So,~Midpoint~of~MN=(\frac{-1+3}{2} ,\frac{7-1}{2}) = (\frac{2}{2},\frac{6}{2})=(1,3)\\Now,\\MN~passes~through~(-1,7)~and~(3,-1).\\Slope~of~MN(m_{MN})=(\frac{y_2-y_1}{x_2-x_1})=\frac{-1-7}{3+1} = \frac{-8}{4} =-2\\Let~the~slope~of~the~line~which~is~perpendicular~bisector~of~MN~be~'m'.\\Using~the~condition~of~perpendicular~lines,\\(m_{MN})(m)=-1\\or, -2m=-1\\or, m=\frac{1}{2}\\[/tex][tex]The~perpendicular~bisector~of~MN~has~slope~\frac{1}{2}~and~it~passes~through~ midpoint~of~MN, (1,3).\\So,~its~equation~is~given~by:\\y-3=\frac{1}{2}(x-1)\\or, 2y-6 = x-1\\or, x-2y=1-6\\or, x-2y+5=0 ~is~the~required~equation.[/tex]
The equation of the line which is perpendicular to MN is x -2y +5=0
The equation of a line with a slope of m and a y-intercept of (0, b) is
y = mx + b.
The coordinates of M (-1,7) and N( 3, -1)
So, the midpoints of MN are
[tex](\frac{-1+3}{2},\frac{ -1+7}{2}) = (1, 3)\\[/tex]
Now, slope of MN be:
[tex]\frac{y_2-y_2}{x_2-x_1}[/tex] =[tex]\frac{-1-7}{3+1}[/tex] = -2
slope of MN= -2
Let the slope of line which is perpendicular to MN be m'
So, m x m'=-1
-2m' = -1
[tex]m=\frac{1}{2}[/tex]
So, the equation of the line be:
[tex]y- 3 = m (x-1)[/tex]
y-3= [tex]\frac{1}{2}[/tex] (x-1)
2y-6=x-1
x - 2y +5= 0
Learn more about equation of line here:
https://brainly.com/question/21511618
#SPJ2