Respuesta :

Answer:

see explanation

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

y = [tex]\frac{2}{3}[/tex] x - 6 ← is in slope- intercept form

with slope m = [tex]\frac{2}{3}[/tex]

Parallel lines have equal slopes , then

y = [tex]\frac{2}{3}[/tex] x + c ← is the partial equation

To find c substitute (9, 2) into the partial equation

2 = 6 + c ⇒ c = 2 - 6 = - 4

y = [tex]\frac{2}{3}[/tex] x - 4 ← equation of parallel line

-------------------------------------------------------------------

Given a line with slope m then the slope of a line perpendicular to it is

[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{\frac{2}{3} }[/tex] = - [tex]\frac{3}{2}[/tex] , then

y = - [tex]\frac{3}{2}[/tex] x + c ← is the partial equation

To find c substitute (9, 2) into the partial equation

2 = - [tex]\frac{27}{2}[/tex] + c ⇒ c = 2 + [tex]\frac{27}{2}[/tex] = [tex]\frac{31}{2}[/tex]

y = - [tex]\frac{3}{2}[/tex] x + [tex]\frac{31}{2}[/tex] ← equation of perpendicular line

ACCESS MORE