Respuesta :

Given:

Base angle of an isosceles triangle is 15 degrees more than its vertical angle.

To find:

The measure of each angle of the triangle.

Solution:

Let x be the vertical angle. Then,

One base angle = x+15 degrees

We know that base angles of an isosceles triangle are equal.

Another base angle = x+15 degrees

Now, the sum of all angles of a triangle is 180 degrees by the angle sum property.

[tex]x^\circ+(x+15)^\circ+(x+15)^\circ=180^\circ[/tex]          (Angle sum property)

[tex](3x+30)^\circ=180^\circ[/tex]

[tex]3x+30=180[/tex]

[tex]3x=180-30[/tex]

[tex]3x=150[/tex]

Divide both sides by 3.

[tex]x=\dfrac{150}{3}[/tex]

[tex]x=50[/tex]

The measure of base angles is

[tex](x+15)^\circ=(50+15)^\circ[/tex]

[tex](x+15)^\circ=65^\circ[/tex]

Therefore, the measure of angles are 50°, 65° and 65°.

ACCESS MORE