Solve the Anti derivative.
![Solve the Anti derivative class=](https://us-static.z-dn.net/files/d5f/9395bdb530fb8fb2e1f19296cd417d44.jpg)
Answer:
[tex]\displaystyle \int {\frac{1}{9x^2+4}} \, dx = \frac{1}{6}arctan(\frac{3x}{2}) + C[/tex]
General Formulas and Concepts:
Algebra I
Calculus
Antiderivatives - integrals/Integration
Integration Constant C
U-Substitution
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Trig Integration: [tex]\displaystyle \int {\frac{du}{a^2 + u^2}} = \frac{1}{a}arctan(\frac{u}{a}) + C[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \int {\frac{1}{9x^2 + 4}} \, dx[/tex]
Step 2: Integrate Pt. 1
Step 3: Identify Variables
Set up u-substitution for the arctan trig integration.
[tex]\displaystyle u = x \\ a = \frac{2}{3} \\ du = dx[/tex]
Step 4: Integrate Pt. 2
Topic: AP Calculus AB
Unit: Integrals - Arctrig
Book: College Calculus 10e