Given the function f(x) = [tex]\frac{|x|}{x}[/tex] , find [tex]\lim_{x \to \00^-} f(x) and \lim_{x \to \00^+} f(x) and \lim_{x \to \00} f(x)[/tex]

Respuesta :

Space

Answer:

[tex]\displaystyle \lim_{x \to 0^-} f(x) = -1 \\ \lim_{x \to 0^+} f(x) = 1 \\ \lim_{x \to 0} f(x) = DNE[/tex]

General Formulas and Concepts:

Algebra I

  • Graphing Functions
  • Function Notation

Calculus

Limits

  • Evaluating Limits Graphically
  • If [tex]\displaystyle \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)[/tex], then [tex]\displaystyle \lim_{x \to a} f(x)[/tex] exists

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle f(x) = \frac{|x|}{x}[/tex]

Step 2: Graph/Evaluate

Graph the function so we can evaluate the given limits. See attachment.

We see from the function that when we approach 0 from the left, we will get a -1.

∴ [tex]\displaystyle \lim_{x \to 0^-} f(x) = -1[/tex]

We see from the function that when we approach 0 from the right, we will get a 1.

∴ [tex]\displaystyle \lim_{x \to 0^+} f(x) = 1[/tex]

Since the limit from the left does not equal the limit from the right, the limit as x approaches 0 of f(x) does not exist (DNE).

Ver imagen Space