Divide the polynomials.
Your answer should be a polynomial.
22
49
x +7
![Divide the polynomials Your answer should be a polynomial 22 49 x 7 class=](https://us-static.z-dn.net/files/de5/0afe7af43311d5836fdc06a64d0e2a02.png)
Answer:
x - 7
Step-by-step explanation:
Given
[tex]\frac{x^2-49}{x+7}[/tex]
x² - 49 is a difference of squares and factors as (x - 7)(x + 7)
= [tex]\frac{(x-7)(x+7)}{x+7}[/tex] ← cancel x + 7 on the numerator/ denominator
= x - 7
Answer:
Formula used: a²-b²=(a-b)(a+b)
[tex] ★\:\:\frac{( {x}^{2} - 49) }{(x + 7)} = \frac{ ({x}^{2} - {7}^{2} ) }{(x + 7)} = \frac{(x - 7)(x + 7)}{(x + 7)} =\boxed{ (x - 7)}[/tex]