Answer:
Please check the explanation.
Step-by-step explanation:
Given the equation
[tex]x^2\:-16x\:+\:39\:=\:0[/tex]
Subtract 39 from both sides
[tex]x^2-16x+39-39=0-39[/tex]
Simplify
[tex]x^2-16x=-39[/tex]
Rewrite in the form x² + 2ax + a²
solve for a, 2ax = -16x
2ax = -16x
divide both sides by 2a
2ax/2x = -16x/2x
a = -8
Add a² = (-8)² to both sides
[tex]x^2-16x+\left(-8\right)^2=-39+\left(-8\right)^2[/tex]
simplify
[tex]x^2-16x+\left(-8\right)^2=25[/tex]
Apply perfect square formula: (a-b)² = a² - 2ab + b²
[tex]\left(x-8\right)^2=25[/tex] ∵ [tex]x^2-16x+\left(-8\right)^2=\left(x-8\right)^2[/tex]
Thus,
[tex]\left(x-8\right)^2=25[/tex]
BONUS! EXTENDED SOLUTION!
We can further solve for x such as
[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]
solve
[tex]x-8=\sqrt{25}[/tex]
[tex]x-8=\sqrt{5^2}[/tex]
[tex]x-8=5[/tex]
[tex]x=13[/tex]
similarly,
[tex]x-8=-\sqrt{25}[/tex]
[tex]x-8=-5[/tex]
[tex]x=3[/tex]
Therefore,
[tex]x=13,\:x=3[/tex]