Respuesta :

Answer:

Please check the explanation.

Step-by-step explanation:

Given the equation

[tex]x^2\:-16x\:+\:39\:=\:0[/tex]

Subtract 39 from both sides

[tex]x^2-16x+39-39=0-39[/tex]

Simplify

[tex]x^2-16x=-39[/tex]

Rewrite in the form x² + 2ax + a²

solve for a, 2ax = -16x

2ax = -16x

divide both sides by 2a

2ax/2x = -16x/2x

a = -8

Add a² = (-8)² to both sides

[tex]x^2-16x+\left(-8\right)^2=-39+\left(-8\right)^2[/tex]

simplify

[tex]x^2-16x+\left(-8\right)^2=25[/tex]

Apply perfect square formula:  (a-b)² = a² - 2ab + b²

[tex]\left(x-8\right)^2=25[/tex]           ∵ [tex]x^2-16x+\left(-8\right)^2=\left(x-8\right)^2[/tex]

Thus,

[tex]\left(x-8\right)^2=25[/tex]

BONUS! EXTENDED SOLUTION!

We can further solve for x such as

[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

solve

[tex]x-8=\sqrt{25}[/tex]

[tex]x-8=\sqrt{5^2}[/tex]

[tex]x-8=5[/tex]        

[tex]x=13[/tex]

similarly,

[tex]x-8=-\sqrt{25}[/tex]

[tex]x-8=-5[/tex]

[tex]x=3[/tex]

Therefore,

[tex]x=13,\:x=3[/tex]

RELAXING NOICE
Relax