Respuesta :
Answer:
The instantaneous rate of change of [tex]y[/tex] with respect to [tex]x[/tex] at the value [tex]x = 3[/tex] is 18.
Step-by-step explanation:
a) Geometrically speaking, the average rate of change of [tex]y[/tex] with respect to [tex]x[/tex] over the interval by definition of secant line:
[tex]r = \frac{y(b) -y(a)}{b-a}[/tex] (1)
Where:
[tex]a[/tex], [tex]b[/tex] - Lower and upper bounds of the interval.
[tex]y(a)[/tex], [tex]y(b)[/tex] - Function exaluated at lower and upper bounds of the interval.
If we know that [tex]y = 3\cdot x^{2}[/tex], [tex]a = 3[/tex] and [tex]b = 6[/tex], then the average rate of change of [tex]y[/tex] with respect to [tex]x[/tex] over the interval is:
[tex]r = \frac{3\cdot (6)^{2}-3\cdot (3)^{2}}{6-3}[/tex]
[tex]r = 27[/tex]
The average rate of change of [tex]y[/tex] with respect to [tex]x[/tex] over the interval [tex][3,6][/tex] is 27.
b) The instantaneous rate of change can be determined by the following definition:
[tex]y' = \lim_{h \to 0}\frac{y(x+h)-y(x)}{h}[/tex] (2)
Where:
[tex]h[/tex] - Change rate.
[tex]y(x)[/tex], [tex]y(x+h)[/tex] - Function evaluated at [tex]x[/tex] and [tex]x+h[/tex].
If we know that [tex]x = 3[/tex] and [tex]y = 3\cdot x^{2}[/tex], then the instantaneous rate of change of [tex]y[/tex] with respect to [tex]x[/tex] is:
[tex]y' = \lim_{h \to 0} \frac{3\cdot (x+h)^{2}-3\cdot x^{2}}{h}[/tex]
[tex]y' = 3\cdot \lim_{h \to 0} \frac{(x+h)^{2}-x^{2}}{h}[/tex]
[tex]y' = 3\cdot \lim_{h \to 0} \frac{2\cdot h\cdot x +h^{2}}{h}[/tex]
[tex]y' = 6\cdot \lim_{h \to 0} x +3\cdot \lim_{h \to 0} h[/tex]
[tex]y' = 6\cdot x[/tex]
[tex]y' = 6\cdot (3)[/tex]
[tex]y' = 18[/tex]
The instantaneous rate of change of [tex]y[/tex] with respect to [tex]x[/tex] at the value [tex]x = 3[/tex] is 18.