Respuesta :

Answer:

[tex]\displaystyle x=\frac{\log 3}{\log(3)-\log 2}\approx 2.71[/tex]

Step-by-step explanation:

Logarithms

We need to recall these properties of logarithms:

[tex]\log_ax^n=m\log_ax[/tex]

[tex]\log_a(xy)=\log_a(y)+\log_a(y)[/tex]

The equation to solve is:

[tex]3^x=3*2^x[/tex]

Applying logarithms:

[tex]\log(3^x)=\log(3*2^x)[/tex]

Applying the exponent property on the left side and the product property on the right side:

[tex]x\log(3)=\log 3+\log 2^x[/tex]

Applying the exponent property:

[tex]x\log(3)=\log 3+x\log 2[/tex]

Rearranging:

[tex]x\log(3)-x\log 2=\log 3[/tex]

Factoring:

[tex]x(\log(3)-\log 2)=\log 3[/tex]

Solving:

[tex]\boxed{\displaystyle x=\frac{\log 3}{\log(3)-\log 2}}[/tex]

Calculating:

[tex]\mathbf{x\approx 2.71}[/tex]

RELAXING NOICE
Relax