Respuesta :

Answer:

m∠BCD = 24°

Step-by-step explanation:

By the theorem,

"Angle subtended by an arc at the center of the circle is twice in measure of the angle subtended at the circumference."

m(∠BOD) = 2(m∠BFD)

                = 2(78°)

                 = 156°

Therefore, m(arc BD) = m∠BOD = 156°

Since, m(arc BD) + m(arc BFD) = 360°

156° + m(arc BFD) = 360°

m(arc BFD) = 360 - 156

                   = 204°

Since, "angle formed outside the circle by the intersection of two tangents measure half of the difference of the intercepted arcs".

m∠BCD = [tex]\frac{1}{2}[m(\text{arc BFD})-m(\text{arc BD})][/tex]

              = [tex]\frac{1}{2}[204 - 156][/tex]

              = 24°

RELAXING NOICE
Relax