Answer:
x = -0.5 or -1
Step-by-step explanation:
Given the quadratic equation;
2x² + 3x + 1 = 0
The standard form of a quadratic equation is ax² + bx + c = 0
Therefore, a = 2, b = 3 and c = 1
Quadratic equation formula is;
[tex] x = \frac {-b \; \pm \sqrt {b^{2} - 4ac}}{2a} [/tex]
Substituting into the equation, we have;
[tex]x = \frac {-3 \; \pm \sqrt {3^{2} - 4*2*1}}{2*2}[/tex]
[tex]x = \frac {-3 \pm \sqrt {9 - 8}}{4}[/tex]
[tex]x = \frac {-3 \pm \sqrt {1}}{4}[/tex]
Simplifying further, we have;
[tex]x = \frac {-3 \pm 1}{4}[/tex]
[tex]x_{1} = \frac {-3 + 1}{4}[/tex]
[tex]x_{1} = \frac {-2}{4}[/tex]
[tex]x_{1} = -0.5[/tex]
To find the value of x2;
[tex]x_{2} = \frac {-3 - 1}{4} \\x_{2} = \frac {-4}{4} \\x_{2} = -1[/tex]
Therefore, the value of x = -0.5 or -1