Respuesta :

Given:

The coordinates of point K' are (6,5).

K' is the image of K after a reflection in the line y=2.

To find:

The coordinates of point K.

Solution:

Let the coordinates of point K are (a,b).

If a figure is reflected over the line y=2, then

[tex](x,y)\to (x,2(2)-y)[/tex]

[tex](x,y)\to (x,4-y)[/tex]

Using this formula, the coordinates of image of K are

[tex]K(a,b)\to K'(a,4-b)[/tex]

The coordinates of point K' are (6,5).

[tex]K'(a,4-b)=K'(6,5)[/tex]

On comparing both sides, we get

[tex]a=6\text{ and }4-b=5[/tex]

[tex]a=6\text{ and }-b=5-4[/tex]

[tex]a=6\text{ and }-b=1[/tex]

[tex]a=6\text{ and }b=-1[/tex]

Therefore, the coordinates of point K are (6,-1).

RELAXING NOICE
Relax