Answer:
The length of the strip is 4ft
Explanation:
Given
Room dimension: 8 by 12
Rug Area: 32
Required
Determine the width of the strip
Since it is an even strip. Represent the width with w.
So, the rug area [tex](in\ terms\ of\ the\ room\ dimension)[/tex] is:
[tex]Area = (8 - w) * (12 - w)[/tex]
Substitute 32 for Area
[tex]32 = (8 - w) * (12 - w)[/tex]
Expand
[tex]32 = 8(12 - w) -w(12 - w)[/tex]
Open brackets
[tex]32 = 96 - 8w -12w + w^2[/tex]
Collect Like Terms
[tex]w^2 - 12w - 8w -32 + 96 = 0[/tex]
[tex]w^2 - 20w+64 = 0[/tex]
Expand
[tex]w^2 - 16w - 4w + 64 = 0[/tex]
Factorize
[tex]w(w - 16) - 4(w - 16) = 0[/tex]
[tex](w - 4)(w - 16) = 0[/tex]
[tex]w - 4 = 0\ \ or\ w-16=0[/tex]
[tex]w = 4\ \ or\ w=16[/tex]
But w can't be greater than the any of the dimension of the room (8 or 12).
So:
[tex]w = 4[/tex]
Hence, the length of the strip is 4ft