Respuesta :

Answer:

Part A: the parabola opens upwards

Part B: [tex]x=\frac{3}{2}[/tex]

Part C: The vertex point is [tex](\frac{3}{2},-\frac{1}{2})[/tex]

Part D: [tex]y=4[/tex]

Part E: [tex]x_{1}=1[/tex] and [tex]x_{2}=2[/tex]

Step-by-step explanation:

We have the function:

[tex]f(x)=2x^{2}-6x+4[/tex]

Where the coefficients are:

a = 2

b = -6

c = 4

Part A:

Here we can see that the leading coefficient of our parabola (a = 2) is positive, so by the definition, the parabola opens upwards.    

Part B:

The axis of the symmetry equation is given by:

[tex]x=\frac{-b}{2a}[/tex]

[tex]x=\frac{-(-6)}{2(2)}[/tex]

[tex]x=\frac{6}{4}[/tex]

[tex]x=\frac{3}{2}[/tex]

Part C:

The vertex is the minimum point of our parabola.

Using the x value founded in Part B we can find f(x)=y.

[tex]y=2(3/2)^{2}-6(3/2)+4[/tex]

[tex]y=2(9/4)-6(3/2)+4[/tex]

[tex]y=(9/2)-3(3)+4[/tex]

[tex]y=(9/2)-9+4[/tex]

[tex]y=-\frac{1}{2}[/tex]

Therefore, the vertex point is [tex](\frac{3}{2},-\frac{1}{2})[/tex]

Part D:

To get the y-intercept we just need to do x = 0.

[tex]y=2(0)^{2}-6(0)+4[/tex]

[tex]y=4[/tex]

The y-intercept is (0,4)

Part E:

To get the x-intercept we just need to do y = 0.

[tex]0=2x^{2}-6x+4[/tex]

[tex]2(x-2)(x-1)=0[/tex]

[tex]x_{1}=1[/tex]

[tex]x_{2}=2[/tex]

The x-intercept is (1,0) and (2,0)

I hope it helps you!

RELAXING NOICE
Relax