Answer:
Part A: the parabola opens upwards
Part B: [tex]x=\frac{3}{2}[/tex]
Part C: The vertex point is [tex](\frac{3}{2},-\frac{1}{2})[/tex]
Part D: [tex]y=4[/tex]
Part E: [tex]x_{1}=1[/tex] and [tex]x_{2}=2[/tex]
Step-by-step explanation:
We have the function:
[tex]f(x)=2x^{2}-6x+4[/tex]
Where the coefficients are:
a = 2
b = -6
c = 4
Part A:
Here we can see that the leading coefficient of our parabola (a = 2) is positive, so by the definition, the parabola opens upwards.
Part B:
The axis of the symmetry equation is given by:
[tex]x=\frac{-b}{2a}[/tex]
[tex]x=\frac{-(-6)}{2(2)}[/tex]
[tex]x=\frac{6}{4}[/tex]
[tex]x=\frac{3}{2}[/tex]
Part C:
The vertex is the minimum point of our parabola.
Using the x value founded in Part B we can find f(x)=y.
[tex]y=2(3/2)^{2}-6(3/2)+4[/tex]
[tex]y=2(9/4)-6(3/2)+4[/tex]
[tex]y=(9/2)-3(3)+4[/tex]
[tex]y=(9/2)-9+4[/tex]
[tex]y=-\frac{1}{2}[/tex]
Therefore, the vertex point is [tex](\frac{3}{2},-\frac{1}{2})[/tex]
Part D:
To get the y-intercept we just need to do x = 0.
[tex]y=2(0)^{2}-6(0)+4[/tex]
[tex]y=4[/tex]
The y-intercept is (0,4)
Part E:
To get the x-intercept we just need to do y = 0.
[tex]0=2x^{2}-6x+4[/tex]
[tex]2(x-2)(x-1)=0[/tex]
[tex]x_{1}=1[/tex]
[tex]x_{2}=2[/tex]
The x-intercept is (1,0) and (2,0)
I hope it helps you!