Respuesta :
Answer:
The flux of F in the outward orientation is equal to 0.
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
Multivariable Calculus
Partial Derivatives
Vector Calculus (Line Integrals)
Del (Operator):
[tex]\displaystyle \nabla = \hat{\i} \frac{\partial}{\partial x} + \hat{\j} \frac{\partial}{\partial y} + \hat{\text{k}} \frac{\partial}{\partial z}[/tex]
Div
- [tex]\displaystyle \text{div \bf{F}} = \nabla \cdot \textbf{F}[/tex]
Divergence Theorem:
[tex]\displaystyle \iint_S {\big( \nabla \times \textbf{F} \big) \cdot \textbf{n}} \, d\sigma = \iiint_D {\nabla \cdot \textbf{F}} \, dV[/tex]
Explanation:
*Note:
Your question is incomplete, but I have defined the portions of the questions that were missing below.
Step 1: Define
Identify given.
[tex]\displaystyle \textbf{F}(x, y, z) = z^3 \hat{\i} - x^3 \hat{\j} + y^3 \hat{\text{k}}[/tex]
[tex]\displaystyle \text{Region:} \{ \ \text{Sphere: } x^2 + y^2 + z^2 = a^2 \ \}[/tex]
Step 2: Integrate Pt. 1
- Find div F:
[tex]\displaystyle \text{div \bf{F}} = \frac{\partial}{\partial x}z^3 - \frac{\partial}{\partial y}x^3 + \frac{\partial}{\partial z}y^3[/tex] - [div F] Differentiate [Partial Derivatives]:
[tex]\displaystyle \text{div \bf{F}} = 0[/tex] - [Divergence Theorem] Substitute in div F:
[tex]\displaystyle \iint_S {\big( \nabla \times \textbf{F} \big) \cdot \textbf{n}} \, d\sigma = \iiint_D {0} \, dV[/tex]
Step 3: Integrate Pt. 2
We can evaluate the Divergence Theorem integral pretty easily:
[tex]\displaystyle \begin{aligned}\iiint_D {0} \, dV & = \iint_D {0} \, dV \\& = \int_D {0} \, dV \\& = \boxed{0}\end{aligned}[/tex]
∴ [tex]\displaystyle \Phi = 0[/tex]
---
Learn more about Divergence Theorem: https://brainly.com/question/14040950
Learn more about multivariable calculus: https://brainly.com/question/13933633
---
Topic: Multivariable Calculus
Unit: Stokes' Theorem and Divergence Theorem