The legs are defined by [tex]L(x) = 2x[/tex]. The Hypotenuse if defined by [tex]h(x) = L(x)\cdot \sqrt{2}[/tex]. The perimeter is defined by:
[tex]p(x) = h(x)+2\cdot L(x) \\~\\p(x) = L(x)\cdot\sqrt{2} +2\cdot L(x) \\~\\p(x) = L(x)\cdot\left(\sqrt{2}+2\right) \\~\\p(x) = 2x\cdot\left(\sqrt{2}+2\right) \\~\\p(x)= 2\sqrt{2}x+4x[/tex]
D. P(x) = 2x √2 + 4x