Answer:
[tex]\sqrt{2} (2) \sqrt{(1 - cosx)}[/tex] + Constant
Step-by-step explanation:
Step 1: Remove the common factor from the radicand
[tex]\sqrt {2 + 2 cosx} = \sqrt{2} * \sqrt {1 + cosx}[/tex]
move the constant in front of the integral
[tex]\sqrt {2} \int\ {\sqrt {1 + cosx} } \, dx[/tex]
Step 2: multiply integral by 1 - cosx
[tex]\sqrt{2} \int{ (1 + cosx}) dx * \frac{(1 - cosx)}{(1 - cosx)} = \sqrt{2} \int {\sqrt{ \frac{ 1 - cos^2x}{1 - cosx } x} \, dx[/tex]
1 - [tex]cos^2x[/tex] is equivalent to [tex]sin^2x[/tex] by trig identities
Step 3: simplify the integral with the identity before using u-substitution
[tex]\sqrt{2} \int {\sqrt{ \frac{ sin^2x}{1 - cosx} x} \, dx[/tex]
Step 4: Use U-Substitution
u = 1 - cosx
du = sinx dx, dx = [tex]\frac{du}{sinx}[/tex]
[tex]\sqrt{2} \int {\frac{sinx}{\sqrt{u}}} \, \frac{du}{sinx} = \sqrt{2} \int {\frac{du}{\sqrt{u}} }[/tex]
Step 5: Integrate
[tex]\int{u ^ \frac{-1}{2}} \, du = 2 u^\frac{1}{2}[/tex]
Step 6: substitute original u value and solve for final answer
[tex]\sqrt {2} (2) \sqrt{1 - cosx}[/tex] + Constant