Respuesta :

Answer:

[tex]\sqrt{2} (2) \sqrt{(1 - cosx)}[/tex] + Constant

Step-by-step explanation:

Step 1: Remove the common factor from the radicand

[tex]\sqrt {2 + 2 cosx} = \sqrt{2} * \sqrt {1 + cosx}[/tex]

move the constant in front of the integral

[tex]\sqrt {2} \int\ {\sqrt {1 + cosx} } \, dx[/tex]

Step 2: multiply integral by 1 - cosx

[tex]\sqrt{2} \int{ (1 + cosx}) dx * \frac{(1 - cosx)}{(1 - cosx)} = \sqrt{2} \int {\sqrt{ \frac{ 1 - cos^2x}{1 - cosx } x} \, dx[/tex]

1 - [tex]cos^2x[/tex] is equivalent to [tex]sin^2x[/tex] by trig identities

Step 3: simplify the integral with the identity before using u-substitution

[tex]\sqrt{2} \int {\sqrt{ \frac{ sin^2x}{1 - cosx} x} \, dx[/tex]

Step 4: Use U-Substitution

u = 1 - cosx

du = sinx dx,   dx = [tex]\frac{du}{sinx}[/tex]

[tex]\sqrt{2} \int {\frac{sinx}{\sqrt{u}}} \, \frac{du}{sinx} = \sqrt{2} \int {\frac{du}{\sqrt{u}} }[/tex]

Step 5: Integrate

[tex]\int{u ^ \frac{-1}{2}} \, du = 2 u^\frac{1}{2}[/tex]

Step 6: substitute original u value and solve for final answer

 [tex]\sqrt {2} (2) \sqrt{1 - cosx}[/tex] + Constant

RELAXING NOICE
Relax