Respuesta :

The length of AC to one decimal place in the trapezium is 18.1 cm

Calculations and Parameters

If we use Pythagoras theorem,

c² = a² + b²

We would draw a line from point B to the line AD and call it line BX.

BX ║ CD

This computes as:

  • 16² - 7² = BX²
  • 256  - 49 = BX²
  • BX² = 207
  • BX = √207
  • BX = 14.3874945699
  • BX = 14.4 cm

Next step:

  • 11² + 14.4² = AC²
  • 121 + 207.36 = AC²
  • AC = √328.36
  • AC = 18.120706388
  • AC = 18.1 cm

Read more about trapeziums here:

https://brainly.com/question/11188070

#SPJ1

RELAXING NOICE
Relax