Respuesta :

Step-by-step explanation:

[tex] \underline{ \underline{ \text{Given}}} : [/tex]

  • [tex] \tt{4x + 3y = 20........... \text{ equation \: ( \: i \: )}}[/tex]
  • [tex] \tt{4x + 2y = 14.......... \text{equation \: (ii)}}[/tex]

[tex] \underline{ \text{USE \: ELIMINATION \: METHOD}} : [/tex]

Subtract equation ( ii ) from equation ( i ) :

Remember that the sign of each term of the second expression changes i.e equation ( i ) now becomes -4x -3y = -20

[tex] \tt{ \cancel{4x }+ 2y = 14}[/tex]

[tex] \tt{ \cancel{ - 4x} - 3y = - 20} [/tex]

__________________

[tex] \tt{ - y = - 6}[/tex]

⟿ [tex] \tt{ \boxed{ \tt{y = 6}}}[/tex]

Again , Substituting the value of y in equation ( ii ) :

⟿ [tex] \tt{4x + 2 \times 6 = 14}[/tex]

⟿ [tex] \tt{4x + 12 = 14}[/tex]

⟿ [tex] \tt{4x = 2}[/tex]

⟿ [tex] \boxed{ \tt{x = \frac{1}{2}}} [/tex]

[tex] \red{ \boxed{ \boxed{ \tt{Our \: final \: answer : x = \frac{1}{2 } \: and \: y = 6}}}}[/tex]

Hope I helped ! ツ

Have a wonderful day / night ! ♡

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

RELAXING NOICE
Relax