Using xn+1 = 1 -(3/x^2)
with x0 = -2.5
Find the values of X1, X2 and X3 using iteration

Answer:
The values of [tex]x_{1}[/tex], [tex]x_{2}[/tex] and [tex]x_{3}[/tex] are 0.52, -10.094 and 0.971.
Step-by-step explanation:
Let [tex]x_{n+1} = 1-\frac{3}{x_{n}^{2}}[/tex] be the recurrence formula and [tex]x_{o} = -2.5[/tex]. The first values of this recurrence are, respectively:
[tex]x_{1}[/tex]:
[tex]x_{1} = 1 - \frac{3}{x_{o}^{2}}[/tex]
[tex]x_{1} = 1-\frac{3}{(-2.5)^{2}}[/tex]
[tex]x_{1} = 0.52[/tex]
[tex]x_{2}[/tex]:
[tex]x_{2} = 1-\frac{3}{x_{1}^{2}}[/tex]
[tex]x_{2} = 1-\frac{3}{0.52^{2}}[/tex]
[tex]x_{2} = -10.094[/tex]
[tex]x_{3}[/tex]:
[tex]x_{3} = 1-\frac{3}{x_{2}^{2}}[/tex]
[tex]x_{3} = 1 - \frac{3}{(-10.094)^{2}}[/tex]
[tex]x_{3} = 0.971[/tex]
The values of [tex]x_{1}[/tex], [tex]x_{2}[/tex] and [tex]x_{3}[/tex] are 0.52, -10.094 and 0.971.
Answer:
= 0.52, -10.094 and 0.9705561461
Step-by-step explanation:
If you input this equation into a calculator while using brackets around [tex]x[/tex]n, you should get these values above. Hope that helps!