Respuesta :

Answer:

The values of [tex]x_{1}[/tex], [tex]x_{2}[/tex] and [tex]x_{3}[/tex] are 0.52, -10.094 and 0.971.

Step-by-step explanation:

Let [tex]x_{n+1} = 1-\frac{3}{x_{n}^{2}}[/tex] be the recurrence formula and [tex]x_{o} = -2.5[/tex]. The first values of this recurrence are, respectively:

[tex]x_{1}[/tex]:

[tex]x_{1} = 1 - \frac{3}{x_{o}^{2}}[/tex]

[tex]x_{1} = 1-\frac{3}{(-2.5)^{2}}[/tex]

[tex]x_{1} = 0.52[/tex]

[tex]x_{2}[/tex]:

[tex]x_{2} = 1-\frac{3}{x_{1}^{2}}[/tex]

[tex]x_{2} = 1-\frac{3}{0.52^{2}}[/tex]

[tex]x_{2} = -10.094[/tex]

[tex]x_{3}[/tex]:

[tex]x_{3} = 1-\frac{3}{x_{2}^{2}}[/tex]

[tex]x_{3} = 1 - \frac{3}{(-10.094)^{2}}[/tex]

[tex]x_{3} = 0.971[/tex]

The values of [tex]x_{1}[/tex], [tex]x_{2}[/tex] and [tex]x_{3}[/tex] are 0.52, -10.094 and 0.971.

Answer:

=  0.52, -10.094 and 0.9705561461

Step-by-step explanation:

If you input this equation into a calculator while using brackets around [tex]x[/tex]n, you should get these values above. Hope that helps!

RELAXING NOICE
Relax