What is the length of CD? In this diagram, AABC ~ AEDC.

Answer:
[tex] \implies\overline {CD} = 4[/tex]
Step-by-step explanation:
[tex] \triangle ABC \sim \triangle EDC... (given)[/tex]
[tex] \therefore \frac{BC}{CD} = \frac{AC}{EC}..(by\: c. s. s. t) [/tex]
[tex] \therefore \frac{20-x}{x} = \frac{20}{5} [/tex]
[tex] \therefore \frac{20-x}{x} = \frac{4}{1} [/tex]
4x = 20- x
4x + x = 20
5x = 20
[tex] \therefore x = {20}{5} [/tex]
[tex] \therefore x = 4 [/tex]
[tex]\huge \purple {\boxed {\implies\overline {CD} = 4}} [/tex]