Solve for x and y. 30-60-90 triangles

Answer:
Step-by-step explanation:
From the given right-angle triangle
The angle = ∠60°
The hypotenuse = 6
Using the trigonometric ratio
cos 60° = adjacent / hypotenuse
substituting adjacent = x and hypotenuse = 6
cos 60° = x / 6
6 × cos 60° = x
x = 3
Thus, the value of x is:
And using the trigonometric ratio
sin 60° = opposite / hypotenuse
substituting opposite = y and hypotenuse = 6
[tex]sin\:60^{\circ }\:=\:\frac{y}{6}\:[/tex]
[tex]y=6\:\times\:sin\:60^{\circ }[/tex]
[tex]=6\times \frac{\sqrt{3}}{2}[/tex] ∵ [tex]\sin \left(60^{\circ \:}\right)=\frac{\sqrt{3}}{2}[/tex]
[tex]=3\sqrt{3}[/tex]
Therefore, the value of y is:
Summary: