Respuesta :

Space

Answer:

[tex]\displaystyle \frac{d}{dx}[\log \big( \sec (x^2) \big)] = \frac{2x \tan x^2}{\ln 10}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \log \big( \sec (x^2) \big)[/tex]

Step 2: Differentiate

  1. Logarithmic Differentiation [Derivative Rule - Chain Rule]:                      [tex]\displaystyle y' = \frac{(\sec x^2)'}{\ln (10) \sec x^2}[/tex]
  2. Trigonometric Differentiation [Derivative Rule - Chain Rule]:                   [tex]\displaystyle y' = \frac{\sec x^2 \tan x^2 (x^2)'}{\ln (10) \sec x^2}[/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle y' = \frac{\tan x^2 (x^2)'}{\ln 10}[/tex]
  4. Basic Power Rule:                                                                                        [tex]\displaystyle y' = \frac{2x \tan x^2}{\ln 10}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

RELAXING NOICE
Relax