Respuesta :
Thank you for posting your question here at brainly. Below is the solution:
Use the following relation: dE = h ( f2 - f1), where dE is the difference in the energy, h is the Planck's Constant and f1, f2 are the given frequencies.
dE = 6.626 X 10^ -34 ( 589.6 - 589) = 3.9756e-34
Use the following relation: dE = h ( f2 - f1), where dE is the difference in the energy, h is the Planck's Constant and f1, f2 are the given frequencies.
dE = 6.626 X 10^ -34 ( 589.6 - 589) = 3.9756e-34
Answer : The energy difference for one mole of photon is 206.55 J/mol.
Explanation :
Formula used :
[tex]E=\frac{hc}{\lambda}[/tex]
For two different wavelength the formula will be:
[tex]E_1=\frac{hc}{\lambda_1}[/tex]
[tex]E_2=\frac{hc}{\lambda_2}[/tex]
[tex]\Delta E=E_1-E_2=\frac{hc}{\lambda_1}-\frac{hc}{\lambda_2}[/tex]
[tex]\Delta E=hc\times [\frac{1}{\lambda_1}-\frac{1}{\lambda_2}][/tex]
where,
[tex]\Delta E[/tex] = difference in energy of photon = ?
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\lambda_1[/tex] = wavelength of photon 1 = 589.0 nm = [tex]589\times 10^{-9}m[/tex]
conversion used : [tex]1nm=10^{-9}m[/tex]
[tex]\lambda_2[/tex] = wavelength of photon 2 = 589.6 nm = [tex]589.6\times 10^{-9}m[/tex]
Now put all the given values in the above formula, we get:
[tex]\Delta E=(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)\times [\frac{1}{589\times 10^{-9}m}-\frac{1}{589.6\times 10^{-9}m}][/tex]
[tex]\Delta E=3.43\times 10^{-22}J[/tex]
Energy difference for one mole of photon = [tex]\Delta E\times \text{Avogadro's number}[/tex]
Energy difference for one mole of photon = [tex](3.43\times 10^{-22}J)\times (6.022\times 10^{23})=206.55J/mol[/tex]
Therefore, the energy difference for one mole of photon is 206.55 J/mol.