Determine which regions contain cube roots of -1. Check all that apply.
on real axis
on imaginary axis
quadrant 1
quadrant 2
quadrant 3
quadrant 4

Respuesta :

Answer:

A:on real axis C:quadrant 1 F:quadrant 4

Step-by-step explanation:

I took the assignment

Cube roots of -1 lies in the region given in the best options are  A. on real axis, B. quadrant 1, F. quadrant 4.

What is cube roots of -1?

Cube roots of -1 mean "finding solution of the equation z³ = -1 since the equation is of order 3, the equation has 3 roots in complex field."

According to the question,

Cube roots of -1 can written as [tex](-1)^\frac{1}{3}[/tex].

Step (1): Write the given number in polar form

x = [tex](cos 0 - i sin 0)^\frac{1}{3}[/tex]

Step (2): Add 2kπ to the argument

x = [tex](cos 2k\pi - i sin 2k\pi )^\frac{1}{3}[/tex]

Step (3): Apply [tex]De[/tex] [tex]Moivre's[/tex]  theorem = [tex](cos \alpha + i sin\alpha) = (cos n\alpha + i sin\alpha )[/tex]

x =  [tex]\frac{cos2k\pi }{3} - i sin \frac{2k\pi }{3}[/tex]

Step (4): Put k = 0,1,2 .... (n-1)                   [sin (-θ) = -sin θ, cos(-θ) = cos θ]

The three roots are

cos 0 - [tex]i[/tex] sin 0, cos [tex]\frac{2\pi }{3}[/tex] - [tex]i[/tex] sin [tex]\frac{2\pi }{3}[/tex], cos [tex]\frac{4\pi }{3}[/tex] - [tex]i[/tex] sin [tex]\frac{4\pi }{3}[/tex]

-1, [tex]-\frac{1}{2} - i\frac{\sqrt{3} }{2}[/tex], [tex]\frac{-1}{2} + i \frac{\sqrt{3} }{2}[/tex] are the three roots of cube roots of -1.

Clearly three roots lies in the regions of real axis, quadrant 1 and quadrant 4.

Hence, Cube roots of -1 lies in the region given in the best options are  A. on real axis, B. quadrant 1, F. quadrant 4.

Learn more about cube roots of -1 here

https://brainly.com/question/22687916

#SPJ2

ACCESS MORE