Respuesta :
Answer:
[tex]F_4=\frac{4}{b}F_1[/tex]
Explanation:
Centripetal force is the net force acting on a body which makes it move along a curved path. This force is always towards the center of curvature.
The centripetal force is given by:
F = mv² / r
where m is the mass of the body, v is the velocity of the body, r is the radius, F is the centripetal force and v²/r is the centripetal acceleration.
Given that:
[tex]\frac{v_4}{v_1}=2\\\\v_4=2v_1\\\\ Also, radius\ of\ lane\ 4(r_4)=2*radius\ of\ lane\ 1\\\\Let\ r_1\ be\ radius\ of\ lane\ 1,m=mass\ of\ runner\ in\ lane\ 1=mass\ of\ runner\ in\ lane\ 4\ \\and\ v_4=velocity\ of\ runner\ in\ lane\ 4.\ Hence:\\\\r_4=b*r_1=br_1\\\\The\ centripetal\ force\ for\ lane\ 4(F_4)\ is:\\\\F_4=\frac{mv_4^2}{r_4}\\\\ F_4=\frac{m(2v_1)^2}{br_1}\\\\F_4= \frac{4mv_1^2}{br_1} \\\\But\ F_1=\frac{mv_1^2}{r_1}\\\\Hence\ F_4=\frac{4}{b}F_1[/tex]
F4 is equal to 4/b F1. A further explanation is provided below.
According to the question,
- [tex]\frac{v_4}{v_1} =2[/tex]
- [tex]\frac{r_4}{r_1} = b[/tex]
The net force of the object in uniform circular motion will be:
→ [tex]F = \frac{mv^2}{r}[/tex]
∴ [tex]F_1 = \frac{m_1 v_1^2}{r_1}[/tex]
[tex]F_4 = \frac{m_4 v_4^2}{r_4}[/tex]
Now,
→ [tex]\frac{F_1}{F_4} = \frac{m_1}{m_4}\times (\frac{v_1}{v_4} )^2\times \frac{r_4}{r_1}[/tex]
[tex]\frac{F_1}{F_4} = \frac{1}{4}\times b[/tex]
[tex]F_1 = \frac{b}{4} F_4[/tex]
[tex]F_4 = \frac{4}{b} F_1[/tex]
Thus the above response i.e., "option b" is correct.
Learn more:
https://brainly.com/question/4527006