Answer:
[tex]x_{N_2F_2}= 0.415\\\\x_{SF_6}=0.585[/tex]
Explanation:
Hello!
In this case, since the mole fraction of both gases in the tank is computed via:
[tex]x_{N_2F_2}=\frac{n_{N_2F_2}}{n_{N_2F_2}+n_{SF_6}} \\\\x_{SF_6}=\frac{n_{SF_6}}{n_{N_2F_2}+n_{SF_6}}[/tex]
It means we need to compute the moles of each gas, just as it is shown down below:
[tex]n_{N_2F_2}}=5.53gN_2F_2*\frac{1molN_2F_2}{66.01gN_2F_2} =0.0838molN_2F_2\\\\n_{SF_6}=17.3gSF_6*\frac{1molSF_6}{146.06gSF_6} =0.118molSF_6[/tex]
Thus, the mole fractions turn out:
[tex]x_{N_2F_2}=\frac{0.0838mol}{0.0838mol+0.118mol}= 0.415\\\\x_{SF_6}=\frac{0.0838mol}{0.0838mol+0.0838mol}=0.585[/tex]
Best regards!