The fan pressure differential gage on an air handler reads 12 cm H2O. What is this pressure differential in kiloPascals

Respuesta :

Answer:

[tex]1.18\ \text{kPa}[/tex]

Explanation:

g = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]

h = Height of reading = 12 cm

[tex]\rho[/tex] = Density of water = [tex]1000\ \text{kg/m}^3[/tex]

Pressure due to height difference is given by

[tex]P=\rho gh\\\Rightarrow P=1000\times 9.81\times 12\times 10^{-2}\\\Rightarrow P=1177.2\ \text{Pa}=1.1772\ \text{kPa}\approx 1.18\ \text{kPa}[/tex]

The pressure differential is [tex]1.18\ \text{kPa}[/tex].

The pressure differential will be "1.18 kPa".

According to the question,

  • Height of reading, [tex]h = 12 \ cm[/tex]
  • Density of water, [tex]\rho = 1000 \ kg/m^3[/tex]
  • Acceleration due to gravity, [tex]g = 9.8 \ m/s^2[/tex]

The formula will be:

→ [tex]P = \rho g h[/tex]

By putting the values, we get

      [tex]= 1000\times 9.8\times 12\times 10^{-2}[/tex]

      [tex]= 1177.2 \ Pa[/tex]

      [tex]= 1.18 \ kPa[/tex]

Thus the answer above is correct.

Learn more about pressure here:

https://brainly.com/question/17708758

ACCESS MORE