Answer:
2
[tex]0.4167\ \text{M}^{-1}\text{min}^{-1}[/tex]
Explanation:
Half-life
[tex]{t_{1/2}}A=2\ \text{min}[/tex]
[tex]{t_{1/2}}B=4\ \text{min}[/tex]
Concentration
[tex]{[A]_0}_A=1.2\ \text{M}[/tex]
[tex]{[A]_0}_B=0.6\ \text{M}[/tex]
We have the relation
[tex]t_{1/2}\propto \dfrac{1}{[A]_0^{n-1}}[/tex]
So
[tex]\dfrac{{t_{1/2}}_A}{{t_{1/2}}_B}=\left(\dfrac{{[A]_0}_B}{{[A]_0}_A}\right)^{n-1}\\\Rightarrow \dfrac{2}{4}=\left(\dfrac{0.6}{1.2}\right)^{n-1}\\\Rightarrow \dfrac{1}{2}=\left(\dfrac{1}{2}\right)^{n-1}[/tex]
Comparing the exponents we get
[tex]1=n-1\\\Rightarrow n=2[/tex]
The order of the reaction is 2.
[tex]t_{1/2}=\dfrac{1}{k[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{t_{1/2}[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{2\times 1.2^{2-1}}\\\Rightarrow k=0.4167\ \text{M}^{-1}\text{min}^{-1}[/tex]
The rate constant is [tex]0.4167\ \text{M}^{-1}\text{min}^{-1}[/tex]