Answer:
Explanation:
Let the velocity of firing be u at angle θ
At maximum height velocity will be equal to horizontal component of initial velocity or vcosθ
So , vtop = v cosθ
At height h/2
vertical component of velocity v₂
v₂² = (usinθ)² - 2 g . h/2
v₂² = u²sin²θ - gh
horizontal component of velocity at height h/2 = u cosθ
velocity at height h / 2
= √ ( u²sin²θ - gh + u² cos²θ)
Given
√ ( u²sin²θ - gh + u² cos²θ) = 2 vtop
u²sin²θ - gh + u² cos²θ = 4 v²top = 4 u² cos²θ
u²sin²θ - gh = 3 u² cos²θ
At height h , vertical component of velocity is zero
0 = u²sin²θ - 2gh
gh = u²sin²θ / 2
u²sin²θ - u²sin²θ / 2 = 3 u² cos²θ
u²sin²θ / 2 = 3 u² cos²θ
Tan²θ = 6
Tanθ = 2.45
θ = 68⁰ .