Respuesta :
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
So,
a) 0 < r < r1 :
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
Hence, E = 0 for r < r1
b) r1 < r < r2:
Electric field =?
Let, us consider the Gaussian Surface,
E x 4 [tex]\pi[/tex] [tex]r^{2}[/tex] = [tex]\frac{Q1}{E_{0} }[/tex]
So,
Rearranging the above equation to get Electric field, we will get:
E = [tex]\frac{Q1}{E_{0} . 4 \pi. r^{2} }[/tex]
Multiply and divide by [tex]r1^{2}[/tex]
E = [tex]\frac{Q1}{E_{0} . 4 \pi. r^{2} }[/tex] x [tex]\frac{r1^{2} }{r1^{2} }[/tex]
Rearranging the above equation, we will get Electric Field for r1 < r < r2:
E= (σ1 x [tex]r1^{2}[/tex]) /([tex]E_{0}[/tex] x [tex]r^{2}[/tex])
c) r > r2 :
Electric Field = ?
E x 4 [tex]\pi[/tex] [tex]r^{2}[/tex] = [tex]\frac{Q1 + Q2}{E_{0} }[/tex]
Rearranging the above equation for E:
E = [tex]\frac{Q1+Q2}{E_{0} . 4 \pi. r^{2} }[/tex]
E = [tex]\frac{Q1}{E_{0} . 4 \pi. r^{2} }[/tex] + [tex]\frac{Q2}{E_{0} . 4 \pi. r^{2} }[/tex]
As we know from above, that:
[tex]\frac{Q1}{E_{0} . 4 \pi. r^{2} }[/tex] = (σ1 x [tex]r1^{2}[/tex]) /([tex]E_{0}[/tex] x [tex]r^{2}[/tex])
Then, Similarly,
[tex]\frac{Q2}{E_{0} . 4 \pi. r^{2} }[/tex] = (σ2 x [tex]r2^{2}[/tex]) /([tex]E_{0}[/tex] x [tex]r^{2}[/tex])
So,
E = [tex]\frac{Q1}{E_{0} . 4 \pi. r^{2} }[/tex] + [tex]\frac{Q2}{E_{0} . 4 \pi. r^{2} }[/tex]
Replacing the above equations to get E:
E = (σ1 x [tex]r1^{2}[/tex]) /([tex]E_{0}[/tex] x [tex]r^{2}[/tex]) + (σ2 x [tex]r2^{2}[/tex]) /([tex]E_{0}[/tex] x [tex]r^{2}[/tex])
Now, for
d) Under what conditions, E = 0, for r > r2?
For r > r2, E =0 if
σ1 x [tex]r1^{2}[/tex] = - σ2 x [tex]r2^{2}[/tex]