Answer:
W = 29.06 KJ
Explanation:
The work done while stretching the leash can be calculated by the following formula:
[tex]W = \int\limits^b_a {F_{x}} \, dx \\[/tex]
whee,
W = Work Done = ?
Fₓ = Forcing Function = (-5.7 N/m)x - (78 N/m²)x²
a = starting point of x = 0 m
b = end point of x = 22 m
Therefore,
[tex]W = \int\limits^{22\ m}_{0\ m} {(-(5.7\ N/m)x - (7.8\ N/m^{2})x^{2}}) \, dx \\Integrating\ we\ get:\\W = -\frac{(5.7\ N/m)x^{2}}{2} - \frac{(7.8\ N/m^{2})x^{3}}{3}\\Applying\ limits:\\W = -\frac{(5.7\ N/m)(22\ m)^{2}}{2} - \frac{(7.8\ N/m^{2})(22\ m)^{3}}{3} - 0\\W = - 1379.4\ J - 27684.8\ J\\W = 29064.2\ J[/tex]
W = 29.06 KJ