Answer:
q = 1 x 10⁻⁵ C = 10 μC
Explanation:
The repulsive force between the charges is given by Coulumb's Law:
[tex]F = \frac{kq_{1}q_{2}}{r^{2}}\\[/tex]
where,
F = Electrostatic Force = 12 N
k = Coulomb's Constat = 9 x 10⁹ Nm²/C²
r = distance between charges = 28 cm = 0.28 m
Since the values or charges are not given. We assume that both charges have same mahnitude. Therefore,
q₁ = q₂ = q = charge on each sphere = ?
Therefore,
[tex]12\ N = \frac{(9\ x\ 10^{9}\ Nm^{2}/C^{2})q^{2}}{(0.28\ m)^{2}} \\\\q^{2} = \frac{(12\ N)(0.28\ m)^{2}}{9\ x\ 10^{9}\ Nm^{2}/C^{2}}\\q = \sqrt{1\ x\ 10^{-10}\ C^{2}}\\[/tex]
q = 1 x 10⁻⁵ C = 10 μC