Respuesta :

Answer:

[tex]y = -5x+10[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (2,0)[/tex]

[tex]y = \frac{1}{5}x - 2[/tex]

Required

Determine an equation that perpendicular to the equation

An equation has the form:

[tex]y = mx + b[/tex]

Where

[tex]m = slope[/tex]

By comparison:

[tex]m = \frac{1}{5}[/tex]

Next, we determine the slope of the new line.

When two lines are perpendicular, the following relation exist:

[tex]m_2= -\frac{1}{m_1}[/tex]

Substitute 1/5 for m1

[tex]m_2= -\frac{1}{1/5}[/tex]

[tex]m_2= -5[/tex]

The equation of the line is then calculated using:

[tex]y - y_1 = m(x - x_1)[/tex]

Where:

[tex]m_2= -5[/tex] and [tex](x_1,y_1) = (2,0)[/tex]

This gives:

[tex]y - 0 = -5(x - 2)[/tex]

[tex]y = -5(x - 2)[/tex]

[tex]y = -5x+10[/tex]