Respuesta :

Given:

The graph of an exponential function.

To find:

The function in the form of [tex]f(x)=ab^x[/tex].

Solution:

The general form of an exponential function is

[tex]f(x)=ab^x[/tex]                ...(i)

From the given graph it is clear that the function passes through the points (0,4) and (1,7). It means these points will satisfy the function.

For x=0 and f(x)=4,

[tex]4=ab^0[/tex]

[tex]4=a(1)[/tex]

[tex]4=a[/tex]

For x=1 and f(x)=7,

[tex]7=ab^1[/tex]

Putting a=4, we get

[tex]7=4(b)[/tex]

[tex]\dfrac{7}{4}=b[/tex]

Substitute a=4 and [tex]b=\dfrac{7}{4}[/tex] in (i).

[tex]f(x)=4\left(\dfrac{7}{4}\right)^x[/tex]

Therefore, the required exponential function is [tex]f(x)=4\left(\dfrac{7}{4}\right)^x[/tex].

ACCESS MORE