The quadratic equation x^2 + 8x + 15 = 0 can be rewritten as the equation below, where p and q are constants.
(x - p)^2 = q
What is the value of p?

Respuesta :

Answer:

[tex]p = -4[/tex] and [tex]q = 1[/tex]

Step-by-step explanation:

Given

[tex]x^2 + 8x + 15 = 0[/tex]

Required

Rewrite as:

[tex](x - p)^2 =q[/tex]

[tex]x^2 + 8x + 15 = 0[/tex]

Subtract 15 from both sides

[tex]x^2 + 8x + 15 - 15 = 0 - 15[/tex]

[tex]x^2 + 8x = - 15[/tex]

-----------------------------------------------------------------------

To make the equation a perfect square, follow these steps

[tex]b = 8[/tex] ---- the coefficient of x

Divide both sides by 2:

[tex]\frac{b}{2} = \frac{8}{2}[/tex]

[tex]\frac{b}{2} = 4[/tex]

Square both sides

[tex](\frac{b}{2})^2 = 4^2[/tex]

[tex](\frac{b}{2})^2 = 16[/tex]

---------------------------------------------------------------------------------------

So, we add 16 t0 both sides of: [tex]x^2 + 8x = - 15[/tex]

[tex]x^2 + 8x + 16 = - 15 + 16[/tex]

[tex]x^2 + 8x + 16 = 1[/tex]

Factorize:

[tex]x^2 + 4x + 4x+ 16 = 1[/tex]

[tex]x(x + 4) + 4(x + 4) = 1[/tex]

[tex](x + 4) (x + 4) = 1[/tex]

[tex](x + 4)^2 = 1[/tex]

By comparison to: [tex](x - p)^2 =q[/tex]

[tex]-p = 4[/tex] and [tex]q = 1[/tex]

So, we have:

[tex]p = -4[/tex] and [tex]q = 1[/tex]

ACCESS MORE